

Course guide 310606 - 310606 - Mechanics

Last modified: 07/11/2023

Unit in charge: Barcelona School of Building Construction **Teaching unit:** 748 - FIS - Department of Physics.

Degree: BACHELOR'S DEGREE IN GEOINFORMATION AND GEOMATICS ENGINEERING (Syllabus 2016).

(Compulsory subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: Laureano Ramírez de la Piscina Millán

Others: Albert Falqués i Serra

Adrià Tauste Campo Blas Echebarria Domínguez

PRIOR SKILLS

Trigonometry
Elemental algebra
Vectorial calcul
Diferential calcul
Integral calcul
Elelmental mechanics

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Comprehension and domination of the basic concepts about the general laws of mechanincs, thermodinamics, fields, waves and electromagnetism and its application for the resolution of engineering's own problems.

Transversal:

2. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

TEACHING METHODOLOGY

In the hours of presential learning classes are alterned between expositive type and resolution of exercises and problems. In the exposistive clases, big group, the profesor does a theoretical exposistion to introduce basics concepts of the subject, and do examples of practic application. The classes of resolution of exercises and problems are made in the medium group, and altern the resolution of practical exercises and problems by the student with the clarification of the most complicated points by the profesor. The profesor also gives to the student, presentially and across Atenea, exercises and problems destined to the autonomous learning. At the practices of laboratory, after an introduction and explanation by the profesor, the student carries out in groups of practice the application of concepts seen in class, and they will have to present a report.

LEARNING OBJECTIVES OF THE SUBJECT

Comprehension and knowledge of the basic concepts about mechanical laws and its application.

Date: 16/11/2023 **Page:** 1 / 7

STUDY LOAD

Туре	Hours	Percentage
Hours medium group	36,0	24.00
Hours large group	24,0	16.00
Self study	90,0	60.00

Total learning time: 150 h

CONTENTS

Unit 1. Kinematics of point.

Description:

Movement of material point. Systems of reference.

Equations of movement. Trajectory.

Velocity and acceleration.

Intrinsec components of the acceleration.

Types of movement.

Related activities:

Laboratory practice

Evaluation of the corresponding tests.

Full-or-part-time: 20h 25m Theory classes: 3h 20m Practical classes: 2h 50m Laboratory classes: 1h Guided activities: 0h 25m Self study: 12h 50m

Unit 2. Solid rigid kinematics

Description:

Conditions of stiffness.

Translation and rotation.

Superposition principle.

Composition of rotations.

General movement of the solid rigid.

Properties of the solid movement.

Reduction of the solid movement.

Instantaneous shaft.

Type of solid movement.

Acceleration of the solid points.

Related activities:

Evaluation of the corresponding tests.

Full-or-part-time: 22h 40m Theory classes: 4h 50m Practical classes: 3h 40m Guided activities: 0h 40m Self study: 13h 30m

Date: 16/11/2023 **Page:** 2 / 7

Unit 3. Relative movement.

Description:

Reference systems absolut and mobile.

Relative and absolut velocity.

Relative and absolut acceleration.

Relative motion with respect to the Earth's surface.

Related activities:

Evaluation of the corresponding tests.

Full-or-part-time: 21h 35m Theory classes: 3h 50m Practical classes: 3h 40m Guided activities: 0h 35m Self study: 13h 30m

Unit 4. Particle dynamics

Description:

Newton laws. Forces.

Applications of the Newton laws.

Impulse and quantity of movement. Theorem of impulse.

Momentum of a force. Angular momentum. Harmonic oscillator. Damped oscillator.

Related activities:

Evaluation of the corresponding tests.

Full-or-part-time: 14h 15m Theory classes: 3h 30m Practical classes: 1h 50m Guided activities: 0h 25m Self study: 8h 30m

Unit 5. Work and energy.

Description:

Work of a force.

Theorem of work - kynetic energy.

Power of a force.

Conservative and non conservative forces.

Potential energy.

Conservation of the mechanics energy.

Potential energy and force. Examples of potential energy. Equilibrium and potential energy.

Related activities:

Evaluation of the corresponding tests.

Full-or-part-time: 19h 50m Theory classes: 3h 50m Practical classes: 2h 40m Guided activities: 0h 40m Self study: 12h 40m

Unit 6. Dynamics of the particle system and of the solid rigid.

Description:

Particle system. Center of mass.

Quantity of movement of the system. Movement of the center of mass.

Theorem of impulse. Conservation of the quantity of movement.

Collisions

Angular momento of the system. Equation of angular momento. Conservation of the angular momento.

Reference system of the center of mass. Angular momento. Kinetic energy.

Rotation of a solid rigid in relation to a fix axle. Moment of inertia.

Dynamic equation of rotation. Kinetic energy of rotation.

Extensive bodies: mass center and momento of inertia. Steiner theorem.

Gyroscope.

Related activities:

Laboratory practice. Chair experience.

Evaluation of the corresponding test.

Full-or-part-time: 30h Theory classes: 6h 50m Practical classes: 5h 10m Laboratory classes: 1h Guided activities: 0h 40m Self study: 16h 20m

Unit 7. Gravitation

Description:

Movement of the stars. Kepler laws

Universal gravitational law. Gravitational field.

Gravitational potential energy.

Distributions of mass with symetric sphere.

Circular orbit. Eliptic orbit.

Related activities:

Evaluation of the corresponding tests.

Full-or-part-time: 19h 45m Theory classes: 3h 50m Practical classes: 2h 40m Guided activities: 0h 35m Self study: 12h 40m

Date: 16/11/2023 **Page:** 4 / 7

ACTIVITIES

PRACTICE 1- TORSION PENDULUM

Description:

Study of the dynamics in a torsión pendulum, with the measurements of its period.

Specific objectives:

Calculation of inertia momento, Calculation of elastic characteristics, Calculation of errors

Material:

Torsión pendulum, Chronometer

Delivery:

Report

Full-or-part-time: 4h Laboratory classes: 2h

Self study: 2h

PRACTICE 2 - MOVEMENT OF A BODY UNDER THE ACTION OF THE GRAVITY FORCE

Description:

Study of the kinematics of a falling body and parabolic motion.

Specific objectives:

Measurement of positions, velocities and accelerations of a body under the action of the gravity force.

Material:

Body, webcam, computer, software of image captation, software of image analysis, software of data processing

Delivery:

Report

Full-or-part-time: 5h Laboratory classes: 2h

Self study: 3h

CHAIR EXPERIENCE - GYROSCOPE

Description:

Study the dynamics of the gyroscope

Specific objectives:

Application of concepts of the solid rigid dynamics.

Material:

Gyroscope

Full-or-part-time: 3h 20m Laboratory classes: 2h Self study: 1h 20m

Date: 16/11/2023 **Page:** 5 / 7

MIDTERM EXAM OF THEORY

Description:

Theory exam corresponding to the units 1-3

Specific objectives:

Evaluation of theoretical questions of the subject

Full-or-part-time: 0h 45m Guided activities: 0h 45m

MIDTERM PROBLEM EXAM

Description:

Problem exam corresponding to the units 1-3

Specific objectives:

Evaluation of the practical aspects and applications of the subject

Full-or-part-time: 2h Guided activities: 2h

FINAL THEORY EXAM

Description:

Theory exam corresponding to the whole course.

Specific objectives:

Evaluation of hte theoretical questions of the subject

Full-or-part-time: 0h 45m Guided activities: 0h 45m

FINAL PROBLEM EXAM

Description:

Final exam of problems corresponding to the whole course

Specific objectives:

Evaluation of the practical aspects and application of the subject

Full-or-part-time: 2h 30m Theory classes: 2h 30m

Date: 16/11/2023 **Page:** 6 / 7

GRADING SYSTEM

There are two practices, two midterm exams, a theoretical exam of all the content of the subject and a final exam:

- During the course there are two midterm exams that include the units 1 to 3 of the subject. In the first midterm, to carry out during week 7, will be evaluated the theoretical aspects of the subject and will count a 10% to the final mark. In the second midterm, to carry out in week 8, will be evaluated the practical aspects and of application, and will contribute with a 20% to the final mark. The student will have the option to recover the two midterm exams in a unique exam at the end of the course, that will count a 30% of the final mark.
- There will be a theoretical exam of all the contents of the subject during the week 15. In this exam the theoretical aspects will be evaluated, and will contribute with a 20% of the final mark.
- At the final exam of the subject will be evaluated practical aspects and application of the subject, and will contribute with a 40% to the final mark.
- The qualification of practices is calculated like the arithmetic average of each practice, and contribute with a 10% of the final mark.
- The evaluation of the generic competence 05 TEQ N1 "Work in group-Level1" will be carried out in the practice laboratory and with the elaboration of the practice reports.

It will be valued the assistance and work in class.

The students that have obtained a qualification between 3.5 and 4.9 will have the option of showing up to one reevaluation exam of the whole subject. This test will consist in an exam that will evaluate theoretical, practical and application to the whole content of the subject. In case of passing this exam, the final mark will be 5. Thats why this test cannot be used in order to increase the mark if the subject is already passed.

EXAMINATION RULES.

The delivery of the final exam removes the possibility of having a "not atended".

The delivery of the reevaluation midterm exams replaces the qualification of the same ones for the new qualification in all effects. To do the reevaluation test it is necessary to have a final mark between 3.5 and 4.9. In case of passing this exam, the final mark will be 5.

BIBLIOGRAPHY

Basic:

- Burbano, S.; Burbano, E.; Gracia, C. Problemas de física general. 26a ed. Zaragoza: Mira, 1994. ISBN 848868861X.
- Burbano, S.; Burbano, E.; Gracia, C. Física general. 32a ed. Madrid: Tébar, 2003. ISBN 8495447827.
- Alonso, M.; Finn, E.J. Física. Ed. revisada y aumentada. México: Addison Wesley Longman, 1998.
- Martínez Benjamín, Juan José. Mecánica newtoniana [on line]. Barcelona: Edicions UPC, 2001 [Consultation: 15/07/2020]. Available on: http://hdl.handle.net/2099.3/36252. ISBN 8483014351.

Complementary:

- Tipler, P.A.; Mosca, G. Física para la ciencia y la tecnología, vol I, mecánica, oscilaciones y ondas, termodinámica. 5a ed. Barcelona: Reverté, 2005. ISBN 9788429144116.
- Sears, F.W.; Zemansky, M.W.; Young, H.D. Física universitaria. 11a ed. México: Pearson Educación, 2004.

Date: 16/11/2023 **Page:** 7 / 7